Ionisierungsenergien geben Hinweise auf die Energieniveaus von Elektronen in einem Atom

am .

Eine Möglichkeit die Elektronenschalen zu untersuchen ist, ein Elektron aus dem Atom zu entfernen und dabei zu messen, wie viel Energie dazu nötig ist. Die Energie die benötigt wird, um Elektronen aus einem Atom zu entfernen, nennt man Ionisierungsenergie, da hierbei aus einem Atom ein Ion wird.

Bei solchen Experimenten kann man Folgendes messen:

    1. Die Ionisierungsenergie steigt bei einem Element mit jedem weiteren abzuspaltenden Elektron. Hierbei beobachtet man Unregelmäßigkeiten, die auf das Vorhandensein von Schalen hindeuten.

      magnesium-ionisierungsenergien

  

Quelle der Werte: http://www.periodensystem.info/elemente/magnesium/,
am 13.09.15 abgerufen.

 

 

  1. Vergleicht man die 1. Ionisierungsenergie aller Elemente miteinander, so fällt Folgendes auf:

    Erste Ionisierungsenergie PSE

 

Bildquelle: https://commons.wikimedia.org/wiki/File: Erste_Ionisierungsenergie_PSE_color_coded.png, am 13.09.15 abgerufen.

 

 

    • Mit steigender Protonenzahl (Ordnungszahl) innerhalb einer Periode steigt die 1. Ionisierungsenergie.

 

    • Innerhalb einer Gruppe sinkt die 1. Ionisierungsenergie von oben nach unten im PSE.

 

    • Problem 1: Es gibt Unregelmäßigkeiten, die mit dem Schalenmodell nicht mehr erklärt werden können:
      Erste Ionisierungsenergie PSE-unregelm

Bildquelle: https://commons.wikimedia.org/wiki/File: Erste_Ionisierungsenergie_PSE_color_coded.png, am 13.09.15 abgerufen, von mir verändert (Pfeile)

 

 

Einige dieser Unregelmäßigkeiten sind hier in der Abbildung durch Pfeile gekennzeichnet: So erkennt man z.B. bei Bor, Sauerstoff, Aluminium, Schwefel, Gallium und Indium auffällig niedrige 1. Ionisierungsenergien. Schauen wir uns einmal die Unregelmäßigkeit um das Element Gallium genauer an:

 Element   Protonenzahl   1. Schale   2. Schale  3. Schale   4. Schale   1. Ionisierungsenergie 
Zn 30p+ 2e- 8e- 18e- 2e 9,394 eV
Ga 31p+ 2e- 8e- 18e- 3e-  5,999 eV
Ge 32p+ 2e- 8e- 18e- 4e- 7,898 eV 

Vergleicht man die Elektronenkonfigurationen mit den entsprechenden Ionisierungsenergien, so wird nicht klar, wieso Gallium so eine niedrige 1. Ionisierungsenergie besitzt.

 

    • Problem 2: Elektronenkonfiguration der Nebengruppenelemente
 Element   Protonenzahl   1. Schale   2. Schale  3. Schale   4. Schale 
Ca 20p+ 2e- 8e- 8e- 2e-
Sc 21p+ 2e- 8e- 9e- 2e-
... ... ... ... 2e-
Zn 30p+ 2e- 8e- 18e- 2e-

Bei den Nebengruppenelementen (Übergangsmetalle) wird zuerst die 3. Schale bis zu 18 Elektronen aufgefüllt, obwohl sich diese Elemente in der 4. Periode befinden. Erst danach wird ab dem Germanium (s.o.) die 4. Schale weiter aufgefüllt.

 

merke-kleinElektronen sind verschieden stark an dem Kern gebunden. Man spricht von unterschiedlichen Energieniveaus der Elektronen. Je stärker ein Elektron an dem Kern gebunden ist, umso tiefer ist seine Energie - es befindet sich also auf einem niedrigeren Energieniveau. Einem stärker gebundenen Elektron muss man mehr Energie zufügen (Ionisierungsenergie), um es vom Atom zu entfernen, als einem schwächer gebundenen. Das schwächer gebundene Elektron befindet sich auf einem höheren Niveau, besitzt also schon mehr Energie - und benötigt deshalb eine geringere Energiezufuhr zur Entfernung.

 

Folgendes Diagramm zeigt diese Energieniveaus:


energieniveaus-elektronen

Die 7. Schale wurde der Übersicht halber weg gelassen.

Bei diesem Diagramm wird deutlich, das sich die Energieniveaus z.T. überschneiden. Das Schalenmodell bietet hier keinen Erklärungsansatz.

Keine Rechte, um hier Kommentare zu schreiben!

Unterrichtsmaterialien

 shop

Didaktisches Forum zu diesem Thema
Das Atommodell von Niels Bohr Energieniveaus von
Elektronen
Die Grenzen des Bohrschen Atommodells Kurztest zum
Atommodell von Bohr und dem Aufstellen von Lewisformeln
  bohr atommodell  energieniveaus elektronen  grenzen bohr   sichtbar-mit-benutzergruppe-2

   
   
   

Who's Online

Aktuell sind 1081 Gäste und keine Mitglieder online

IMG 29012 k